9787560989815 下载 pdf 电子版 epub 免费 txt 2025
9787560989815电子书下载地址
内容简介:
《毛纲源考研数学辅导系列·考研数学(1):常考题型解题方法技巧归纳(第2版)》在教育部制定的考研数学一“考试大纲”的指导下,经过多年的教学实践,由第一版修改而成。全书共分为三篇:第一篇为高等数学,第二篇为线性代数,第三篇为概率论与数理统计。
《毛纲源考研数学辅导系列·考研数学(1):常考题型解题方法技巧归纳(第2版)》重点讲述考纲中与基本概念、基本理论、基本方法有关的经典试题,内容丰富,题型广泛、全面,任何一年的真题均可在本书中找到对应的题型。
《毛纲源考研数学辅导系列·考研数学(1):常考题型解题方法技巧归纳(第2版)》对各类重点常考题型的解题思路、方法和技巧进行归纳总结,对容易出错的地方以“注意”的形式作了详尽的注解加以强调。各类题型的解法除给出一般的套路外还给出简便的解法,能激发读者阅读此书的兴趣。讲解各类题型的解法时,尽量做到通俗易懂、由浅入深、富于启发,便于自学。因而《毛纲源考研数学辅导系列·考研数学(1):常考题型解题方法技巧归纳(第2版)》是一本广度、深度及难度均适合广大考生使用的辅导书,如能认真学习阅读此书,考研数学高分不是梦。
书籍目录:
第1篇 高等数学
1.1 函数、极限、连续
1.1.1 求几类与复合函数有关的函数表示式
题型1.1.1.1 已知f(x)和φ(x),求f[φ(x)]或φ[f(x)]
题型1.1.1.2 求分段点相同的两分段函数的复合函数
题型1.1.1.3 已知f(x),f[φ(x)],求φ(x)
题型1.1.1.4 已知φ(x)和f[φ(x)],求f(x)
1.1.2 函数的奇偶性
题型1.1.2.1 判别(证明)函数的奇偶性
题型1.1.2.2 奇、偶函数性质的应用
1.1.3 讨论函数的有界性和周期性
题型1.1.3.1 判定有限开区间内连续函数的有界性
题型1.1.3.2 判定无穷区间内连续函数的有界性
题型1.1.3.3 讨论函数的周期性
1.1.4 理解极限概念
题型1.1.4.1 正确理解极限定义中的“ε、N”,“ε、δ”,“ε、X”语言的含义
题型1.1.4.2 正确区别无穷大量与无界变量
1.1.5 求未定式极限
题型1.1.5.1 求0/0型或∞/∞型极限
题型1.1.5.2 求0·∞型极限
题型1.1.5.3 求∞——∞型极限
题型1.1.5.4 求幂指函数(00型,∞0型,1∞型)极限
1.1.6 求数列极限
题型1.1.6.1 求数列通项为n项和的极限
题型1.1.6.2 求由递推关系式给出的数列极限
1.1.7 求几类特殊子函数形式的函数极限
题型1.1.7.1 求须先考察左、右极限的函数极限
题型1.1.7.2 含根式差的函数极限
题型1.1.7.3 求含或可化为含指数函数差的函数极限
题型1.1.7.4 求含lnf(x)的函数极限,其中limx→□f(x)=1
题型1.1.7.5 求含有界变量因子的函数极限
1.1.8 求含参变量的函数极限limn→∞φ(n,x
题型1.1.8.1 求limn→∞φ(n,x),其中φ(n,x)为或可化为F(x)g(n)指数函数型
题型1.1.8.2 求limn→∞φ(n,x),其中φ(n,x)为或可化为g(n)F(x)幂函数型
题型1.1.8.3 求limt→t0φ(t,x),其中φ(t,x)可化为g(n)F(x)型或F(x)g(t)型
题型1.1.8.求limn→∞φ(n,x)或limt→t0φ(t,x),其中φ(n,x)=F(n,x)g(x,n)或φ(t,x)=F(t,x)g(t,x)
1.1.9 已知一极限求其待定常数或含未知函数的另一极限
题型1.1.9.1 由含未知函数的一(些)极限,求含该函数的另一极限
题型1.1.9.2 已知极限式的极限,求其待定常数
1.1.1 0比较和确定无穷小量的阶
题型1.1.1 0.1 比较无穷小量的阶
题型1.1.1 0.2 确定无穷小量为几阶无穷小量
1.1.1 1讨论函数的连续性及间断点的类型
题型1.1.1 1.1 判别函数的连续性
题型1.1.1 1.2 讨论分段函数的连续性
题型1.1.1 1.3 判别函数间断点的类型
1.1.1 2连续函数性质的两点应用
题型1.1.1 2.1 证明存在ξ∈[a,b],使含ξ的等式成立
题型1.1.1 2.2 证明方程实根的存在性
习题1.
1.2 一元函数微分学
1.2.1 导数定义的三点应用
题型1.2.1.1 判断函数在某点的可导性
题型1.2.1.2 利用导数定义求某些函数的极限
题型1.2.1.3 利用导数定义讨论函数性质
1.2.2 讨论分段函数的可导性及其导函数的连续性
题型1.2.2.1 讨论分段函数的可导性
题型1.2.2.2 讨论分段函数的导函数的连续性
题型1.2.2.3 讨论一类特殊分段函数在其分段点的连续性、可导性及其导函数的连续性
1.2.3 讨论含绝对值函数的可导性
题型1.2.3.1 讨论绝对值函数|f(x)|的可导性
题型1.2.3.2 讨论函数f(x)=|φ(x)|g(x)的可导性
1.2.4 求一元函数的导数和微分
题型1.2.4.1 求复合函数的导数
题型1.2.4.2 求反函数的导数
题型1.2.4.3 求隐函数的导数
题型1.2.4.4 求分段函数的一阶、二阶导数
题型1.2.4.5 求幂指函数及含多个因子连乘积的函数的导数
题型1.2.4.6 求由参数方程所确定的函数的导数
题型1.2.4.7 求某些简单函数的高阶导数
题型1.2.4.8 求一元函数的微分
1.2.5 利用函数的连续性、可导性确定其待定常数
题型1.2.5.1 利用函数的连续性确定其待定常数
题型1.2.5.2 根据函数的可导性确定其待定常数
1.2.6 利用微分中值定理的条件及其结论解题
1.2.7 利用罗尔定理证明中值等式
题型1.2.7.1 证明中值等式f′(ξ)=0或f″(ξ)=
题型1.2.7.2 证明存在ξ∈(a,b),使cf′(ξ)=bg′(ξ),其中c,b为常数
题型1.2.7.3 证明存在ξ∈(a,b),使
题型1.2.7.4 证明存在ξ∈(a,b),使f(ξ)g′(ξ)+f′(ξ)g(ξ)=0
题型1.2.7.5 证明存在ξ∈(a,b),使f′(ξ)g(ξ)-f(ξ)g′(ξ)=0(g(ξ)≠0)
题型1.2.7.6 证明存在ξ∈(a,b),使f′(ξ)+g′(ξ)f(ξ)=0
题型1.2.7.7 证明存在ξ∈(a,b),使nf(ξ)+ξf′(ξ)=0(n为正整数
题型1.2.7.8 证明存在ξ∈(a,b),使f(ξ)/g(ξ)=f″(ξ)/g″(ξ),即f(ξ)g″(ξ)-f″(ξ)g(ξ)=0
题型1.2.7.9 证明存在ξ∈(a,b),使f′(ξ)+g′(ξ)[f(ξ)-bξ]=b
题型1.2.7.1 0证明与定积分有关的中值等式
1.2.8 拉格朗日中值定理的应用
题型1.2.8.1 证明与函数改变量(增量)有关的中值(不)等式
题型1.2.8.2 证明函数与其导数的关系
题型1.2.8.3 求解与函数差值有关的问题
题型1.2.8.4 证明多个中值所满足的中值等式
题型1.2.8.5 求中值的极限位置
1.2.9 利用柯西中值定理证明中值等式
题型1.2.9.1 证明两函数差值(增量)比的中值等式
题型1.2.9.2 证明两函数导数比的中值等式
1.2.1 0泰勒定理的两点应用
题型1.2.1 0.1 证明与高阶导数有关的中值(不)等式
题型1.2.1 0.2 计算按常规方法不好求的未定式极限
1.2.1 1利用导数证明不等式
题型1.2.1 1.1 证明函数不等式
题型1.2.1 1.2 证明数值不等式
1.2.1 2讨论函数的性态
题型1.2.1 2.1 证明函数在区间I上是一个常数
题型1.2.1 2.2 证明(判别)函数的单调性
题型1.2.1 2.3 讨论函数是否取得极值
题型1.2.1 2.4 利用二阶微分方程讨论函数是否取极值,其曲线是否有拐点
题型1.2.1 2.5 求曲线凹凸区间与拐点
题型1.2.1 2.6 求函数的单调区间、极值、最值
题型1.2.1 2.7 求曲线的渐近线
1.2.1 3利用函数性态讨论方程的根
题型1.2.1 3.1 讨论不含参数的方程实根的存在性及其个数
题型1.2.1 3.2 讨论含参数的方程实根的存在性及其个数
1.2.1 4函数性态与函数图形
题型1.2.1 4.1 利用函数性态作函数图形
题型1.2.1 4.2 利用函数的图形,确定其导函数的图形
题型1.2.1 4.3 利用导函数的图形,确定原来函数的性态
1.2.1 5一元函数微分学的应用
题型1.2.1 5.1 求平面曲线的切线方程和法线方程
题型1.2.1 5.2 求解与切线在坐标轴上的截距有关的问题
题型1.2.1 5.3 求解与两曲线相切的有关问题
题型1.2.1 5.4 求解与平面曲线的曲率有关的问题
习题1.
1.3 一元函数积分学
1.3.1 原函数与不定积分的关系
题型1.3.1.1 原函数的概念及其判定
题型1.3.1.2 求分段函数的原函数或不定积分
题型1.3.1.3 利用积分运算与微分运算的互逆关系求解与原函数有关的问题
1.3.2 各类被积函数不定积分的算法
题型1.3.2.1 求被积函数为f(x)/g(x)的不定积分,其中f(x)=g′(x)或f′(x)=1/g(x)
题型1.3.2.2 计算被积表达式中出现或可化为f(φ(x))和φ′(x)dx乘积的不定积分
题型1.3.2.3 计算被积函数仅为一类函数或为两类不同函数乘积的不定积分
题型1.3.2.4 计算简单无理函数的不定积分
题型1.3.2.5 求∫1(ax+b)kf1(ax+b)k-1dx,其中k≠1为正实数
题型1.3.2.6 求被积函数的分母为或可化为相差常数的两函数乘积的积分
题型1.3.2.7 求三角函数的不定积分
题型1.3.2.8 求被积函数含复合对数函数或复合反三角函数为因子函数的积分
题型1.3.2.9 有理分式函数∫P(x)Q(x)dx(其中P(x),Q(x)为多项式)的积分算法
1.3.3 利用定积分性质计算定积分
题型1.3.3.1 利用其几何意义计算定积分
题型1.3.3.2 计算对称区间上的定积分
题型1.3.3.3 计算周期函数的定积分
题型1.3.3.4 利用定积分的常用计算公式计算定积分
题型1.3.3.5 计算被积函数含函数导数的积分
题型1.3.3.6 比较和估计定积分的大小
题型1.3.3.7 求解含积分值为常数的函数方程
题型1.3.3.8 计算几类须分子区间积分的定积分
题型1.3.3.9 计算含参数的定积分
题型1.3.3.1 0计算需换元计算的定积分
题型1.3.3.1 1求由定积分表示的变量极限
1.3.4 求解与变限积分有关的问题
题型1.3.4.1 计算含变限积分的极限
题型1.3.4.2 求变限积分的导数
题型1.3.4.3 求变限积分的定积分
题型1.3.4.4 讨论变限积分函数的性态
1.3.5 证明定积分等式
题型1.3.5.1 证明定积分的变换公式
题型1.3.5.2 证明含定积分的中值等式
1.3.6 证明定积分不等式
题型1.3.6.1 证明积分限相等时不等式两端成为零的积分不等式
题型1.3.6.2 证明∫baf(x)dx或∫baf(x)dx≤k(或≥k),k为常数
题型1.3.6.3 证明题设中有二阶导数大(或小)于等于零的定积分不等式
1.3.7 计算反常积分
题型1.3.7.1 计算无穷区间上的反常积分
题型1.3.7.2 判别无界函数的反常积分的敛散性,如收敛计算其值
题型1.3.7.3 判别混合型反常积分的敛散性,如收敛计算其值
1.3.8 定积分的应用
题型1.3.8.1 已知曲线方程,求其所围平面图形的面积
题型1.3.8.2 已知曲线所围平面图形的面积(或其旋转体体积)反求该曲线
题型1.3.8.3 计算平面曲线的弧长
题型1.3.8.4 计算平行截面面积已知的立体体积
题型1.3.8.5 求旋转体体积
题型1.3.8.6 求旋转体的侧(表)面积
题型1.3.8.7 求解几何应用与最值问题相结合的应用题
题型1.3.8.8 计算变力所做的功
题型1.3.8.9 计算液体的侧压力
题型1.3.8.1 0计算细杆对质点的引力
题型1.3.8.1 1计算函数在区间上的平均值
习题1.
1.4 向量代数和空间解析几何
1.4.1 向量代数及其简单应用
题型1.4.1.1 用坐标表达式进行向量运算
题型1.4.1.2 计算向量的数量积、向量积、混合积
题型1.4.1.3 利用向量运算证明(确定)向量关系
1.4.2 求平面方程
题型1.4.2.1 求过已知点的平面方程
题型1.4.2.2 求过已知直线的平面方程
题型1.4.2.3 根据平面在坐标轴上的相对位置求其方程
题型1.4.2.4 求过两平面交线的平面方程
1.4.3 求直线方程
题型1.4.3.1 求过已知点的直线方程
题型1.4.3.2 求过已知点且与已知直线相交的直线方程
题型1.4.3.3 求与两直线相交的直线方程
题型1.4.3.4 求直线在平面上的投影直线方程
1.4.4 讨论直线与平面的位置关系
题型1.4.4.1 讨论平面间的位置关系
题型1.4.4.2 讨论直线与直线的位置关系
题型1.4.4.3 讨论直线与平面的位置关系
1.4.5 求点到平面或到直线的距离
题型1.4.5.1 求点到平面的距离
题型1.4.5.2 求点到直线的距离
1.4.6 求二次曲面方程和空间曲线在坐标面上的投影方程
题型1.4.6.1 求坐标面上曲线绕坐标轴旋转所得的旋转曲面方程
题型1.4.6.2 求空间曲线绕坐标轴旋转所得的曲面方程
题型1.4.6.3 求母线平行于坐标轴的柱面方程
题型1.4.6.4 求空间曲线在坐标面上的投影方程
1.4.7 求解空间解析几何与线性代数、微积分相结合的综合题
习题1
1.5 多元函数微分法及其应用
1.5.1 正确理解二元函数连续、可偏导及可微之间的关系
题型1.5.1.1 依定义判别二元函数在某点是否连续、可偏导及可微
题型1.5.1.2 判别二元函数连续、可偏导、可微之间的关系
1.5.2 计算多元函数的偏导数和全微分
题型1.5.2.1 利用隐函数存在定理确定隐函数
题型1.5.2.2 求抽象复合函数的偏导数
题型1.5.2.3 计算隐函数的导数
题型1.5.2.4 作变量代换将偏导数满足的方程变形
题型1.5.2.5 求方向导数和梯度
题型1.5.2.6 求二元函数的全微分
1.5.3 多元函数微分学的应用
题型1.5.3.1 已知空间曲线的参数方程,求其切线或法平面方程
题型1.5.3.2 已知空间曲线为两曲面的交线,求其切线或法平面方程
题型1.5.3.3 已知空间曲面方程,求其切平面或法线方程
题型1.5.3.4 求二元函数的极值和最值
题型1.5.3.5 求二(多)元函数的条件极值
习题1.5
1.6 多元函数积分学
1.6.1 利用区域的对称性化简多元函数的积分
题型1.6.1.1 计算积分区域具有对称性,被积函数具有奇偶性的重积分
题型1.6.1.2 计算积分区域关于直线y=x对称的二重积分
题型1.6.1.3 计算积分区域具有轮换对称性的三重积分
题型1.6.1.4 计算积分曲线(面)具有对称性的第一类曲线(面)积分
题型1.6.1.5 计算平面积分曲线关于y=x对称的第一类曲线积分
题型1.6.1.6 计算空间积分曲线(曲面)具有轮换对称性的第一类曲线(曲面)积分
题型1.6.1.7 计算积分曲线具有对称性的第二类曲线积分
题型1.6.1.8 计算积分曲面具有对称性的第二类曲面积分
1.6.2 交换积分次序及转换二次积分
题型1.6.2.1 交换二次积分的积分次序
题型1.6.2.2 转换二次积分
1.6.3 计算二重积分
题型1.6.3.1 计算被积函数分区域给出的二重积分
题型1.6.3.2 计算圆域或部分圆域上的二重积分
1.6.4 计算三重积分
题型1.6.4.1 计算积分区域的边界方程均为一次的三重积分
题型1.6.4.2 计算积分区域为旋转体的三重积分
题型1.6.4.3 计算积分区域由球面或球面与锥面所围成的三重积分
题型1.6.4.4 计算被积函数至少缺两个变量的三重积分
题型1.6.4.5 计算易求出其截面区域上的二重积分的三重积分
1.6.5 计算曲线积分
题型1.6.5.1 计算第一类平面曲线积分
题型1.6.5.2 求解平面上与路径无关的第二类曲线积分有关问题
题型1.6.5.3 计算平面上与路径有关的第二类曲线积分
题型1.6.5.4 计算空间第二类曲线积分
1.6.6 计算曲面积分
题型1.6.6.1 计算第一类曲面积分
题型1.6.6.2 计算第二类曲面积分
题型1.6.6.3 已知第二类曲面积分的值,求被积式中的未知函数
1.6.7 多元函数积分学的应用
题型1.6.7.1 计算空间曲线的弧长
题型1.6.7.2 求曲面面积
题型1.6.7.3 计算立体体积
题型1.6.7.4 求质量、重心及转动惯量
题型1.6.7.5 计算变力沿曲线所做的功
题型1.6.7.6 计算物体对质点的引力
题型1.6.7.7 计算向量场的散度与流量(通量)
题型1.6.7.8 计算向量场的旋度与环流量
习题1.6
1.7 级数
1.7.1 判别三类常数项级数的敛散性
题型1.7.1.1 判别正项级数的敛散性
题型1.7.1.2 判别交错级数的敛散性
题型1.7.1.3 判别任意项级数的敛散性
1.7.2 证明常数项级数的敛散性
题型1.7.2.1 证明一般项为或可化为相邻两项代数和的级数的敛散性
题型1.7.2.2 已知一级数收敛,证明相关级数收敛
题型1.7.2.3 已知一般项有极限,证明该级数的敛散性
题型1.7.2.4 证明(判别)一般项为(含)定积分的级数的敛散性
题型1.7.2.5 证明一般项用递推关系式给出的级数的敛散性
题型1.7.2.6 已知函数高阶可导,证明由该函数值组成的级数的敛散性
1.7.3 幂级数的收敛半径、收敛区间及收敛域的求法
1.7.4 求幂级数与数项级数的和
题型1.7.4.1 求∑∞n=1P(n)xn的和函数,P(n)为n的多项式
题型1.7.4.2 求∑∞n=01Q(n)xn的和函数,Q(n)n的多项式
题型1.7.4.3 求含阶乘因子的幂级数的和函数
题型1.7.4.4 求数项级数的和
1.7.5 将简单函数间接展开成幂级数
题型1.7.5.1 求反三角函数的幂级数展开式
题型1.7.5.2 将对数函数展成幂级数
题型1.7.5.3 将有理分式函数展成幂级数
题型1.7.5.4 将三角函数展成幂级数
题型1.7.5.5 利用幂级数展开式求函数的高阶导数
1.7.6 傅里叶级数
题型1.7.6.1 将周期函数展为傅里叶级数
题型1.7.6.2 求傅里叶系数
题型1.7.6.3 求傅里叶级数的和函数在某点的值
习题1.7
1.8 常微分方程
1.8.1 求解一阶线性微分方程
题型1.8.1.1 求解可分离变量的微分方程
题型1.8.1.2 求解齐次方程
题型1.8.1.3 求解一阶线性方程
题型1.8.1.4 求解几类可化为一阶线性方程的方程
题型1.8.1.5 求解方程P(x,y)dx+Q(x,y)dy=0
题型1.8.1.6 求解由变量的增量关系给出的一阶方程
题型1.8.1.7 求满足某种性质的一阶微分方程的特解
1.8.2 求解线性微分方程
题型1.8.2.1 利用线性微分方程解的结构和性质求解有关问题
题型1.8.2.2 求解可降阶的二阶微分方程
题型1.8.2.3 求解高阶常系数齐次线性方程
题型1.8.2.4 求解二阶常系数非齐次线性方程
题型1.8.2.5 求解欧拉方程
题型1.8.2.6 求解含变限积分的方程
题型1.8.2.7 求解可化为一阶线性微分的函数方程
1.8.3 已知特解反求其常系数线性方程
题型1.8.3.1 已知特解反求其齐次方程
题型1.8.3.2 已知特解反求其非齐次方程
1.8.4 用微分方程求解几何和物理中的简单应用题
习题1.8
第2篇 线性代数
2.1 计算行列式
2.1.1 计算数字型行列式
题型2.1.1.1 计算非零元素主要在一条或两条对角线上的行列式
题型2.1.1.2 计算非零元素在三条线上的行列式
题型2.1.1.3 计算行(列)和相等的行列式
题型2.1.1.4 计算范德蒙行列式
题型2.1.1.5 求代数余子式线性组合的值
题型2.1.1.6 计算n阶可逆矩阵的所有代数余子式的和
2.1.2 计算抽象矩阵的行列式
题型2.1.2.1 求由行(列)向量表示的矩阵的行列式的值
题型2.1.2.2 计算与伴随矩阵有关的矩阵行列式
题型2.1.2.3 计算含零子块的四分块矩阵的行列式
题型2.1.2.4 证明方阵的行列式等于零,或不等于零
2.1.3 克莱姆法则的应用
习题2.1
2.2 矩阵
2.2.1 证明矩阵的可逆性
题型2.2.1.1 已知一矩阵等式证明有关矩阵可逆,并求其逆矩阵
题型2.2.1.2 证明矩阵A可逆,且A-1=B
题型2.2.1.3 证明和(差)矩阵可逆
题型2.2.1.4 求矩阵的逆矩阵,该矩阵含一(些)矩阵的逆矩阵
题型2.2.1.5 证明方阵为不可逆矩阵
2.2.2 矩阵元素给定,求其逆矩阵的方法
2.2.3 求解与伴随矩阵有关的问题
题型2.2.3.1 计算与伴随矩阵有关的矩阵行列式
题型2.2.3.2 求与伴随矩阵有关的矩阵的逆矩阵
题型2.2.3.3 求与伴随矩阵有关的矩阵的秩
题型2.2.3.4 求伴随矩阵
2.2.4 计算n阶矩阵的高次幂
题型2.2.4.1 计算能分解为一列向量与一行向量相乘的矩阵的高次幂
题型2.2.4.2 计算能相似对角化的矩阵的高次幂
题型2.2.4.3 计算能分解为两可交换矩阵之和的矩阵的高次幂
题型2.2.4.4 计算其平方等于原矩阵或单位矩阵倍数的矩阵高次幂
2.2.5 求矩阵的秩
题型2.2.5.1 求元素具体给定的矩阵的秩
题型2.2.5.2 求含抽象矩阵或含待定常数的矩阵的秩
题型2.2.5.3 已知矩阵的秩,求其待定常数
2.2.6 分块矩阵乘法运算的应用举例
2.2.7 求解矩阵方程
题型2.2.7.1 求解含单位矩阵加项的矩阵方程
题型2.2.7.2 求解只含一个未知矩阵的矩阵方程
题型2.2.7.3 求解含多个未知矩阵的矩阵方程
题型2.2.7.4 求与已知矩阵可交换的所有矩阵
题型2.2.7.5 已知一矩阵方程,求方程中某矩阵的行列式
2.2.8 初等变换与初等矩阵的关系的应用
题型2.2.8.1 用初等矩阵表示相应的初等变换
题型2.2.8.2 利用初等矩阵的逆矩阵的性质计算矩阵
习题2.2
2.3 向量
2.3.1 判别向量组线性相关与线性无关
题型2.3.1.1 用线性相关性定义做选择题、填空题
题型2.3.1.2 判别分量已知的向量组的线性相关性
题型2.3.1.3 证明几类向量组的线性相关性
题型2.3.1.4 已知向量组的线性相关性,求其待定常数
2.3.2 判定向量能否由向量组线性表示
题型2.3.2.1 判定分量已知的向量能否由向量组线性表示
题型2.3.2.2 判断一抽象向量能否由向量组线性表示
题型2.3.2.3 判别一向量组能否由另一向量组线性表示
2.3.3 两向量组等价的判别方法及常用证法
2.3.4 向量组的秩与极大线性无关组
题型2.3.4.1 求分量给出的向量组的秩及其极大线性无关组
题型2.3.4.2 将向量用极大线性无关组线性表示
题型2.3.4.3 证明抽象向量组的秩有关问题
题型2.3.4.4 证某向量组为一极大无关组
2.3.5 向量空间
题型2.3.5.1 求解空间的基、标准正交基(规范正交基)
题型2.3.5.2 求过渡矩阵
题型2.3.5.3 求向量在某组基下的坐标
习题2.3
2.4 线性方程组
2.4.1 判定线性方程组解的情况
题型2.4.1.1 判定齐次线性方程组解的情况
题型2.4.1.2 判定非齐次线性方程组解的情况
2.4.2 由其解反求方程组或其参数
题型2.4.2.1 已知AX=0的解的情况,反求A中参数
题型2.4.2.2 已知AX=b的解的情况,反求方程组中参数
题型2.4.2.3 已知其基础解系,求该方程组的系数矩阵
2.4.3 证明一组向量为基础解系
2.4.4 基础解系和特解的简便求法
2.4.5 求解含参数的线性方程组
题型2.4.5.1 求解方程个数与未知数个数相等的含参数的线性方程组
题型2.4.5.2 求解方程个数与未知数个数不等的含参数的线性方程组
题型2.4.5.3 求解参数仅出现在常数项的线性方程组
题型2.4.5.4 求含参数的方程组满足一定条件的通解
2.4.6 求抽象线性方程组的通解
题型2.4.6.1 A没有具体给出,求AX=0的通解
题型2.4.6.2 已知AX=b的特解,求其通解
题型2.4.6.3 利用线性方程组的向量形式求(证明)其解
2.4.7 求两线性方程组的非零公共解
题型2.4.7.1 求两齐次线性方程组的非零公共解
题型2.4.7.2 证明两齐次线性方程组有非零公共解
题型2.4.7.3 讨论两方程组同解的有关问题
习题2.4
2.5 矩阵的特征值、特征向量
2.5.1 求矩阵的特征值、特征向量
题型2.5.1.1 求元素给出的矩阵的特征值、特征向量
题型2.5.1.2 证明(判别)抽象矩阵的特征值、特征向量
2.5.2 由特征值和(或)特征向量反求其矩阵
题型2.5.2.1 由特征值和(或)特征向量反求矩阵的待定常数
题型2.5.2.2 已知特征值、特征向量,反求其矩阵
题型2.5.2.3 计算Anβ,其中β为列向量,A为方阵
2.5.3 求相关联矩阵的特征值、特征向量
2.5.4 判别同阶方阵是否相似
题型2.5.4.1 判别或证明方阵是否可对角化
题型2.5.4.2 判别两同阶方阵是否相似
2.5.5 相似矩阵性质的简单应用
2.5.6 与两矩阵相似有关的计算
题型2.5.6.1 矩阵A可相似对角化,求A中待定常数及可逆矩阵P,使P-1AP=diag(λ1,λ2,…,λn),其中λ1,λ2,…,λn为A的特征值
题型2.5.6.2 A为实对称矩阵,求A中待定常数及正交矩阵Q,使Q-1AQ=QTAQ=diag(λ1,λ2,…,λn),其中λ1,λ2,…,λn为A的特征值
题型2.5.6.3 A为实对称矩阵,求与其相似的对角矩阵Λ
题型2.5.6.4 已知矩阵A和可逆矩阵P满足一等式,求矩阵B,使P-1AP=B
习题2.5
2.6 二次型
2.6.1 化二次型为标准形
题型2.6.1.1 化二次型为标准形
题型2.6.1.2 已知二次型的标准形,确定该二次型
2.6.2 判别或证明实二次型(实对称矩阵)的正定性
题型2.6.2.1 判别或证明具体二次型(或实对称矩阵)的正定性
题型2.6.2.2 判别或证明抽象的二次型(或实对称矩阵)的正定性
题型2.6.2.3 确定参数的取值范围使二次型或其矩阵正定
题型2.6.2.4 证明与正定矩阵相关联的矩阵的正定性
2.6.3 合同矩阵
题型2.6.3.1 判别两实对称矩阵合同
题型2.6.3.2 讨论矩阵等价、相似及合同的关系
习题2.6
第3篇 概率论与数理统计
3.1 随机事件和概率
3.1.1 随机事件间的关系及运算
题型3.1.1.1 描绘随机试验的样本空间
题型3.1.1.2 用式子表示事件关系及其运算
题型3.1.1.3 利用事件运算的性质或图示法简化事件算式
题型3.1.1.4 求满足一定条件的事件关系
3.1.2 直接计算随机事件的概率
题型3.1.2.1 计算古典型概率
题型3.1.2.2 计算几何型概率
题型3.1.2.3 计算伯努利概型中事件的概率
3.1.3 间接计算随机事件的概率
题型3.1.3.1 计算和、差、积事件的概率
题型3.1.3.2 求与包含关系有关的事件的概率
题型3.1.3.3 计算与互斥事件有关的事件的概率
题型3.1.3.4 求与条件概率有关的事件的概率
题型3.1.3.5 求与他事件有关的单个事件的概率
题型3.1.3.6 判别或证明事件概率不等式
3.1.4 几个计算概率公式的实际应用
题型3.1.4.1 用加法公式求解实际应用题
题型3.1.4.2 用条件概率与概率的乘法公式求解实际应用题
题型3.1.4.3 用全概公式和逆概(贝叶斯)公式求解实际应用题
题型3.1.4.4 利用抽签原理计算事件概率
3.1.5 判别事件的独立性
题型3.1.5.1 判别(证明)两事件相互独立
题型3.1.5.2 判别(证明)n(n>2)个事件相互独立
习题3.1
3.2 一维随机变量及其分布
3.2.1 分布列、概率密度及分布函数性质的应用
题型3.2.1.1 判别分布列、概率密度及分布函数
题型3.2.1.2 证明某实函数为某随机变量的分布函数
题型3.2.1.3 利用分布的性质,确定待定常数或所满足的条件
题型3.2.1.4 求随机变量落在某点或某区间上的概率
3.2.2 求分布列(概率分布)、概率密度及分布函数
题型3.2.2.1 求概率分布(分布律)及其分布函数
题型3.2.2.2 求连续型随机变量的分布函数或其取值
题型3.2.2.3 求概率密度
3.2.3 利用常见分布计算有关事件的概率
题型3.2.3.1 利用二项分布计算伯努利概型中事件的概率
题型3.2.3.2 利用超几何分布计算事件的概率
题型3.2.3.3 利用几何分布计算事件的概率
题型3.2.3.4 利用泊松分布计算事件的概率
题型3.2.3.5 利用均匀分布计算事件的概率
题型3.2.3.6 利用指数分布计算事件的概率
题型3.2.3.7 利用正态分布计算事件的概率
题型3.2.3.8 利用相关分布与二项分布相结合计算事件的概率
3.2.4 随机变量函数的分布
题型3.2.4.1 已知一离散型随机变量的分布,求其函数(另一离散型随机变量)的分布
题型3.2.4.2 已知一连续型随机变量的分布,求其函数(另一连续型随机变量)的分布
题型3.2.4.3 已知一连续型随机变量的分布,求其函数(离散型随机变量)的分布
题型3.2.4.4 讨论随机变量函数分布的性质
习题3.2
3.3 二维随机变量的联合概率分布
3.3.1 求二维随机变量的分布
题型3.3.1.1 求二维离散型随机变量的联合分布律
题型3.3.1.2 求二维随机变量的边缘分布
题型3.3.1.3 由联合分布、边缘分布求条件分布
题型3.3.1.4 由条件分布反求联合分布、边缘分布
题型3.3.1.5 已知分区域定义的联合密度,求其分布函数
3.3.2 随机变量的独立性
题型3.3.2.1 判别两随机变量的独立性
题型3.3.2.2 利用独立性确定联合分布中的待定常数
3.3.3 计算二维随机变量取值的概率
题型3.3.3.1 计算两离散型随机变量运算后取值的概率
题型3.3.3.2 求二维连续型随机变量落入平面区域内的概率
题型3.3.3.3 求与max(X,Y)或(和)min(X,Y)有关的概率
题型3.3.3.4 求系数为随机变量的二次方程有根、无根的概率
3.3.4 求二维随机变量函数的分布
题型3.3.4.1 已知(X,Y)的联合分布律,求Z=g(X,Y)的分布律
题型3.3.4.2 求两随机变量之和的分布
题型3.3.4.3 已知X,Y的分布,求max(X,Y)或(和)min(X,Y)的分布
习题3.3
3.4 随机变量的数字特征
3.4.1 求一维随机变量的数字特征
题型3.4.1.1 求随机变量的数学期望与方差
题型3.4.1.2 求随机变量函数的数学期望与方差
题型3.4.1.3 计算随机变量的矩
3.4.2 求二维随机变量的数字特征
题型3.4.2.1 求(X,Y)的函数g(X,Y)的数学期望和方差
题型3.4.2.2 计算协方差和相关系数
3.4.3 计算两类分布的数字特征
题型3.4.3.1 计算正态分布的数字特征
题型3.4.3.2 计算Z=max(X,Y)或(和)W=min(X,Y)的数字特征
3.4.4 讨论随机变量相关性与独立性的关系
题型3.4.4.1 确定两随机变量相关与不相关
题型3.4.4.2 讨论相关性与独立性的关系
3.4.5 已知数字特征,求分布中的待定常数
3.4.6 求解两类综合应用题
题型3.4.6.1 求解与数字特征有关的实际应用题
题型3.4.6.2 求解概率论与其他数学分支的综合应用题
习题3.4
3.5 大数定律和中心极限定理
3.5.1 用切比雪夫不等式估计事件的概率
3.5.2 大数定律成立的条件和结论
题型3.5.2.1 利用三个大数定律成立的条件解题
题型3.5.2.2 求随机变量序列依概率的收敛值
3.5.3 两个中心极限定理的简单应用
题型3.5.3.1 利用棣莫弗拉普拉斯定理近似计算事件概率
题型3.5.3.2 已知随机变量取值的概率,估计取值范围
题型3.5.3.3 应用列维林德伯格中心极限定理的条件、结论解题
题型3.5.3.4 近似计算n个随机变量之和取值的概率
题型3.5.3.5 已知n个随机变量之和取值的概率,求个数n
习题3.5
3.6 数理统计初步
3.6.1 求解与统计量分布有关的问题
题型3.6.1.1 求解与统计量分布有关的基本概念问题
题型3.6.1.2 求统计量的分布及其分布参数
题型3.6.1.3 求统计量取值的概率
题型3.6.1.4 求统计量的数字特征
题型3.6.1.5 求经验分布函数
3.6.2 参数估计
题型3.6.2.1 求总体分布中未知参数的矩估计量(值)
题型3.6.2.2 求未知参数的极(最)大似然估计量(值
题型3.6.2.3 判别估计量的无偏性、有效性和一致性(相合性
题型3.6.2.4 求正态总体参数的置信区间及其有关参数
3.6.3 假设检验
题型3.6.3.1 计算简单情形下的两类错误概率
题型3.6.3.2 对单个正态总体参数进行假设检验
题型3.6.3.3 对两个正态总体参数进行假设检验
题型3.6.3.4 用检验方法及其结论做填空题与选择题
习题3.6
习题答案与提示
作者介绍:
毛纲源,教授,毕业于武汉大学,留校任教,后调入武汉理工大学担任数学物理系系主任,在高校从事数学教学与科研工作40余年,发表多篇关于考研数学的论文。主讲微积分、线性代数、概率论与数理统计课程。理论功底深厚,教学经验丰富,思维独特。现受聘于北京师范大学珠海分校教授,担任数学的双语教学工作。曾多次受邀在山东、广东、湖北等地主讲考研数学,并得到学员的广泛认可和一致好评:“知识渊博,讲解深入浅出,易于接受”,“解题方法灵活,技巧独特,辅导针对性极强”,“对考研数学的出题形式、考试重难点了如指掌,上他的辅导班受益匪浅”……同样,毛老师的辅导书也受到读者的欢与好评,有兴趣的读者可以上网查询有关对他编写的图书的评价。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
《毛纲源考研数学辅导系列·考研数学(1):常考题型解题方法技巧归纳(第2版)》在教育部制定的考研数学一“考试大纲”的指导下,经过多年的教学实践,由第一版修改而成。全书共分为三篇:第一篇为高等数学,第二篇为线性代数,第三篇为概率论与数理统计。
《毛纲源考研数学辅导系列·考研数学(1):常考题型解题方法技巧归纳(第2版)》重点讲述考纲中与基本概念、基本理论、基本方法有关的经典试题,内容丰富,题型广泛、全面,任何一年的真题均可在本书中找到对应的题型。
《毛纲源考研数学辅导系列·考研数学(1):常考题型解题方法技巧归纳(第2版)》对各类重点常考题型的解题思路、方法和技巧进行归纳总结,对容易出错的地方以“注意”的形式作了详尽的注解加以强调。各类题型的解法除给出一般的套路外还给出简便的解法,能激发读者阅读此书的兴趣。讲解各类题型的解法时,尽量做到通俗易懂、由浅入深、富于启发,便于自学。因而《毛纲源考研数学辅导系列·考研数学(1):常考题型解题方法技巧归纳(第2版)》是一本广度、深度及难度均适合广大考生使用的辅导书,如能认真学习阅读此书,考研数学高分不是梦。
精彩短评:
作者:代号273 发布时间:2017-01-26 16:28:33
竟有kindle版,实在喜出望外!
作者:online 发布时间:2022-05-26 05:46:33
为什么我本科的时候读不到李老师的书,难过。
作者:广大 发布时间:2009-06-01 23:39:47
读的是84年版的,买的是03年版的。
作者:黄晶 发布时间:2021-11-20 22:01:27
白象和九鑫的案例不错。可口可乐的体系确实建得细。
作者:支离破碎 发布时间:2009-12-16 09:50:11
一只毛毛虫吃吃吃的故事,是童话里很常见的那种递增式编剧手法,一个苹果两个梨子三个李子这样,最后是毛毛虫破茧成蝶。贴纸样的图案刷着厚厚的颜料,很贴近孩童审美的画风。很喜欢这种什么剧情都没有低龄童话。
作者:malingcat 发布时间:2011-09-23 14:16:52
我是多么想看彩图啊!!!
深度书评:
勇敢的田纳西·威廉斯
作者:嵇心 发布时间:2020-11-12 12:30:34
勇敢的田纳西·威廉斯
嵇心
《田纳西·威廉斯回忆录》出版于1975年,一个尽管经历过性解放,却还不够开放的年头。它一出版,就因为书里充斥着他的同性恋爱经历而引发热议,甚至被视为“打开裤裆”之作。田纳西·威廉斯非常坦诚地承认写回忆录纯粹是为了赚钱。这就不排除他为招徕读者,而大书特书他的恋爱经历。但更深层次的原因,肯定不只是如此。他在序言中写道:“我会用大量篇幅谈论爱,大多是肉欲之爱以及精神之爱。作为一个常常濒临毁灭的人,我度过了异常幸运的一生,有许多喜悦的时光,其中有纯洁的,也有不洁的。”
这不由让人想到德里达在一部纪录片里惊世骇俗的话。采访者问德里达想了解海德格尔等哲学家哪些方面,德里达回答说:“希望了解他们的性生活……我就是想听一听他们拒绝讨论的事情。为什么这些哲学家在他们的著作里探讨自己时从来不关涉自己的性生活?为什么他们从自己的著作中抹去他们自己的私人生活?在他们的个人生活中没有比爱更为重要的了。”这个答案非同一般。显然,德里达的回答无法仅仅当做窥淫癖的猎奇来理解。
海德格尔等人的著作从来不涉及私生活,而剧作家田纳西·威廉斯的回忆录却鲜有戏剧,几乎全是他的私生活。正如上文德里达那段话,“在他们的个人生活中没有比爱更为重要的了”,对各种各样的爱的肯定也足以构成田纳西·威廉斯写作的理由。
田纳西·威廉斯动笔写回忆录时已经六十出头,也算到了回顾人生的恰当时候。此时属于各种况味都已尝遍的晚年,他能够更从容淡定地看待自己的一生。
即便在经过大众媒体大肆渲染,各种层出不穷的风流韵事已变得司空见惯见怪不怪的今天,《田纳西·威廉斯回忆录》披露出大量的勾引猎艳与始乱终弃,也依旧令人咋舌。它会持续撼动我们的道德感,让保守的人士愤慨不已。
尽管这些情欲经历的斑斑点点布满全书,成为回忆录的主体,但却不应当是我们此时关注的重点。当然,这些从侧面可以极好地反映出田纳西·威廉斯的性格特点,它们无法从阅读中抽离,注定要构成阅读体验的一部分。可是眼睛如果仅仅盯着这些风流韵事,大概会所得甚微吧。
首先书中扑面而来的是一种反省的气息,但这种反省却丝毫不沉重。他回顾最早发现自己的性取向时,也是极其自然而然地述说出来,并无过多的羞愧,更没有无地自容。“我认为自己的言谈举止并无女人气,但在我的心灵深处囚禁着一个小女孩,一个红着脸的女学生……”对自己的认同与接受,才让他很快地加入同性恋的大军。这种坦诚的语气会贯穿回忆录始终。在此,他极少装腔作势,他只是平静地回顾以往的生活。即便动笔写回忆录时,他已是迟暮之年,且早就因剧作名满天下,他却丝毫不避讳自己的真实感受。“我只有在观看煽情电影时才会哭,通常还是些糟糕的电影。”很难想象这样的话会从矜持的当代中国知名作家口中说出,但田纳西·威廉斯偏偏毫不装腔作势,不耍弄文化格调。撞见这样的句子,着实让人惊喜。因为我们时常因为某种文化上的势利,而否认这样的场面会发生在我们身上。
“我由衷觉得自己一辈子从未想过要伤害任何人,但是度过一生而不对别人造成伤害,几乎是不现实的,而且你伤害的极有可能是你深深在乎的人。”这是一种沉痛又平静的感悟。所以,他一辈子为自己曾经偶然伤害后不久就精神崩溃的姐姐而万分自责。他也承认自己作风不检点,而导致善妒的伴侣们情绪失控最后被迫离开,他在回忆录中透露出了悔意。
田纳西·威廉斯专心于戏剧写作,用词自然娴熟准确,时常妙语连珠。试举回忆录中的两例。“他的才华还不够激动人心”,“她变得平静得可悲”,寥寥数笔,却极为感染人,在肯定的时候,突然笔锋一转,又引出了更多涵韵。
可是在妙语连珠的表面下,字里行间仍然难掩他不时透露出的悲凉落寞。在他写回忆录时,他仍有剧在上演,但他比以往任何时候都更在乎别人的反应。即便他明知有些可笑,却也如实道来。“可是我多需要这些年轻夸张的反应,它们是我如今生活中不可或缺的生气。” 他甚至因为数十年的好友兼经纪人奥德丽对刚上演的戏剧反应不够热烈,而以撒泼的语气与之绝交。这是一位生命和艺术即将落幕的大作家之悲凉时刻,他自知艺术在走下坡路,再也无法重回巅峰。“我非常需要朋友,但即使到了六十一岁,我也不希望花钱买朋友。”田纳西·威廉斯的身体在不断衰落,魅力锐减,他显然知道自己无法像年轻时那样情场得意,却仍然有些倔强。他在事业与情感上都不时自我激励,“我从未抱有自我怜悯的态度……倘若一个人本性里有一股骄傲,就不会沉溺于有损尊严的自怜中。”尽管这不完全是他的真实心态,但却也催人奋进。
田纳西·威廉斯写道:“写作的诚实有两种:有品位的诚实,以及没有品味的诚实。”我们无法清晰地判断他的回忆录属于哪种。读过此书后,在他眼花缭乱的情感经历后,我们不时窥见他的脆弱、细腻,以及为了热爱的戏剧写作的投入与挣扎。无论如何,他的一生应该配得上回忆录最后一句话“人生的崇高地位是以勇敢赢得的,这种勇敢使人在困厄的经历中优雅地活下来。”
生而为人,何谓虚假,何谓真实?六段人生交织而成的华章
作者:yasha001 发布时间:2023-10-12 15:17:19
无论如何,染井为人的《真实身份》都是一部让读者看完之后会不自觉流泪的社会派推理小说。作者扎实的叙述技巧以及充盈在故事之中的情感冲突与联系让我在阅读过程中屡屡投射到书中角色身上,从而让读者拥有了对于书中角色光明未来的无限遐想。但是书末接近尾声部分的枪声,又一下子打碎了所有读者的幻想。在这之后的叙述中,作为被遗留下来的人物的奋斗反而更加激起了读者心中感动之情。这种幻想破灭之后仍愿意为某一结果加倍努力的不懈也是在最终章短短两页纸的分量也能让读者流泪的原初。
书腰、外封、本体和书签
《真实身份》中并没有什么复杂的诡计,也没有悬案,存在着的从一开始就只有一个具体的事件:主角镝木庆一作为平成年代最后的少年死刑犯,他逃狱之后的逃亡生活。整部作品可以说是围绕着镝木庆一五次伪装成不同人物在东京都内一边工作一遍查找当年事件目击者,希望找到自己无罪证据的故事。而在这五次伪装中,虽然庆一在不同的单位与不一样的人们接触,期间他不得不隐瞒自己的真实身份,但他善良及乐于助人的内心却在每一次工作中都由于某些事情展露在了同事和读者面前。
作者在这里偷了个巧,没有详细说明为什么庆一可以如此轻易地伪装成不同的人并且顺利找到工作,因为这不是重点所在。作者设置如此之多的不同工作,实际上是将多种社会议题杂糅进了同一本书中。庆一每一次的工作都是一次不同的社会议题探讨:第一次是对黑心企业压榨劳工的控诉,第二次是对大龄女青年的情感问题的讨论,第三次则是网络暴力的影响,第四次来到了诈骗集团的伪装,第五次则是对于日本老龄化社会中老年看护的缺失。读者能否从中感悟到什么,通过这些描写又能够对社会起到什么积极的作用,肯定是作者采取如此结构的一个原因。
而作者分五次写的另一个原因当然是为了让读者不停地累积对于庆一真实善良内心的认知,单一的一次工作不足以让读者真正认识到庆一的温柔,但作者又没有在作品一开始直接写当初那起让庆一成为死刑犯的案件的真实情况,这样就只能通过一次又一次的与不同人物的相遇产生化学反应,让读者打从心底里先认同庆一被判死刑是一起冤案。只有这样,才能通过小说最后的结尾让读者感受到痛入心扉的悲伤。
当然,五次伪装五次工作还有一个作用是为了在作品中集结愿意为庆一伸冤的同仁,这样才能在作品最后用一种蝼蚁撼动大树的方式把全书的另一个主题——日本冤狱为何形成清清楚楚地摆出来。在这过程中,作者塑造了五个性格迥异的重要配角,年龄跨度从19岁到50岁,有男有女,其中有相对精英的人物,也有类似于小混混的角色,不同的性格、年龄层、性别、职业等实际上是把社会上愿意为可能存在的冤狱而奔走的人们给浓缩了,我想在实际生活中,也必然有着各行各业男女老少愿意为正义呐喊。看着书中这些角色最终因为庆一团结在了一起,并且完成了为庆一平反的壮举,读者流下的眼泪中也有喜极而泣的成分吧?
总而言之,本作作为一部难得可以让我泪目的推理小说,其中的阅读体验希望每一个阅读本书的读者都能够自行体会,相信很多读者可以在本书中找到一种温暖,体会到生而为人的赤诚之心。
网站评分
书籍多样性:7分
书籍信息完全性:9分
网站更新速度:6分
使用便利性:7分
书籍清晰度:6分
书籍格式兼容性:8分
是否包含广告:6分
加载速度:5分
安全性:8分
稳定性:7分
搜索功能:9分
下载便捷性:9分
下载点评
- 无颠倒(68+)
- 可以购买(669+)
- 强烈推荐(558+)
- epub(489+)
- 情节曲折(437+)
- 差评少(70+)
- mobi(181+)
下载评价
- 网友 芮***枫: ( 2024-12-16 23:31:21 )
有点意思的网站,赞一个真心好好好 哈哈
- 网友 谭***然: ( 2025-01-04 16:23:16 )
如果不要钱就好了
- 网友 索***宸: ( 2024-12-19 13:14:17 )
书的质量很好。资源多
- 网友 车***波: ( 2024-12-14 15:39:49 )
很好,下载出来的内容没有乱码。
- 网友 瞿***香: ( 2024-12-21 10:58:50 )
非常好就是加载有点儿慢。
- 网友 石***烟: ( 2024-12-20 18:07:11 )
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 汪***豪: ( 2024-12-21 00:00:33 )
太棒了,我想要azw3的都有呀!!!
- 网友 相***儿: ( 2025-01-07 23:43:58 )
你要的这里都能找到哦!!!
- 网友 焦***山: ( 2024-12-25 14:41:21 )
不错。。。。。
- 网友 田***珊: ( 2024-12-18 17:47:24 )
可以就是有些书搜不到
- 网友 堵***洁: ( 2025-01-09 09:43:26 )
好用,支持
- 网友 訾***雰: ( 2025-01-02 10:36:33 )
下载速度很快,我选择的是epub格式
- 网友 马***偲: ( 2024-12-11 00:01:43 )
好 很好 非常好 无比的好 史上最好的
喜欢"9787560989815"的人也看了
高中音乐选择性必修视唱练耳人音版新教材高中课本教材教科书人民音乐出版社普通高中教科书全新正版彩色 下载 pdf 电子版 epub 免费 txt 2025
我长大了 (美)兰登 绘编,张芳 北京联合出版公司 9787550236677 下载 pdf 电子版 epub 免费 txt 2025
2本套 2023一级建筑师 设计前期与场地设计知识题 历年真题解析与模拟试卷+精讲精练 2023全国一级注册建筑师资格考试辅导教材 下载 pdf 电子版 epub 免费 txt 2025
农村民生利益百问百答 下载 pdf 电子版 epub 免费 txt 2025
躺椅和舞台:心理治疗中的语言与行动 罗伯特·兰迪著 华东师范大学出版社 下载 pdf 电子版 epub 免费 txt 2025
- 实用手抄报设计 下载 pdf 电子版 epub 免费 txt 2025
- 有钱人和你想的不一样 下载 pdf 电子版 epub 免费 txt 2025
- 刘少奇民生思想研究 下载 pdf 电子版 epub 免费 txt 2025
- 中华人民共和国简明标准施工招标文件 下载 pdf 电子版 epub 免费 txt 2025
- 下棋 贾平凹【正版】 下载 pdf 电子版 epub 免费 txt 2025
- 职场就是拼情商 下载 pdf 电子版 epub 免费 txt 2025
- 合同法:根据《民法典》全新编写 下载 pdf 电子版 epub 免费 txt 2025
- 开心去外婆家-开心的日常生活历险记-9 桑娜·佩利西奥尼 (Sanna Pelliccion【正版保证】 下载 pdf 电子版 epub 免费 txt 2025
- 大学英语跨文化交流案例教程 下载 pdf 电子版 epub 免费 txt 2025
- 新东方 剑桥标准英语教程4:教师用书(第2版 附光盘) 下载 pdf 电子版 epub 免费 txt 2025
书籍真实打分
故事情节:9分
人物塑造:3分
主题深度:4分
文字风格:6分
语言运用:7分
文笔流畅:4分
思想传递:8分
知识深度:5分
知识广度:4分
实用性:9分
章节划分:5分
结构布局:5分
新颖与独特:8分
情感共鸣:4分
引人入胜:3分
现实相关:8分
沉浸感:4分
事实准确性:9分
文化贡献:4分